Revista de Osteoporosis y Metabolismo Mineral 00078 / http://dx.doi.org/10.20960/RevOsteoporosMetabMiner.00078
Resumen| PDF (ENGLISH)

Revisión

Avances en medicina regenerativa para trastornos ortopédicos: células madre, plasma rico en plaquetas (PRP) y bioimpresión


Kirolos Eskandar

Prepublicado: 2025-06-23
Publicado: 2025-06-23

Logo Descargas   Número de descargas: 8      Logo Visitas   Número de visitas: 143      Citas   Citas: 0

Compártelo:


Los trastornos ortopédicos, como la osteoartritis, las fracturas y las lesiones de los tendones, representan una carga importante para la atención médica y, a menudo, provocan dolor crónico y discapacidad. Los avances en medicina regenerativa han revolucionado el panorama de los tratamientos y ofrecen soluciones novedosas para mejorar la reparación de los tejidos y restaurar su función. Esta revisión explora tres enfoques transformadores en medicina regenerativa: terapia con células madre, plasma rico en plaquetas (PRP) y bioimpresión. Las células madre, en particular las células madre mesenquimales, muestran un inmenso potencial para la regeneración del cartílago, la curación ósea y la reparación de los tendones a través de sus propiedades de diferenciación e inmunomoduladoras. El PRP, rico en factores de crecimiento, ha ganado importancia para acelerar la curación de la osteoartritis y las lesiones de los tejidos blandos, aunque la estandarización sigue siendo un desafío. La bioimpresión, una frontera emergente, permite la fabricación de implantes y andamiajes de tejidos personalizados, ampliando los límites de la atención ortopédica. En este artículo se destacan los mecanismos, las aplicaciones clínicas, la eficacia comparativa y los desafíos de estas terapias, al tiempo que se hace hincapié en su potencial sinérgico y en las innovaciones futuras. La medicina regenerativa promete transformar los tratamientos ortopédicos, cerrar las brechas en la atención actual y allanar el camino para soluciones sanitarias personalizadas y sostenibles.

Palabras Clave: Medicina regenerativa, trastornos ortopédicos, terapia con células madre, plasma rico en plaquetas (PRP), bioimpresión



[1] El-Tallawy SN, Nalamasu R, Salem GI, LeQuang JAK, Pergolizzi JV, Christo PJ. Management of Musculoskeletal Pain: An Update with Emphasis on Chronic Musculoskeletal Pain. Pain Ther. 2021;10(1):181–209.
DOI: 10.1007/s40122-021-00235-2
[2] National Academies Press (US). Musculoskeletal disorders. Selected Health Conditions and Likelihood of Improvement With Treatment - NCBI Bookshelf. 2020 Apr 21. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559512/
[3] Hsu H, Siwiec RM. Knee osteoarthritis. StatPearls - NCBI Bookshelf. 2023 Jun 26. Available from: https://www.ncbi.nlm.nih.gov/books/NBK507884/
[4] Hussain AK, Kakakhel MM, Ashraf MF, Shahab M, Ahmad F, Luqman F, et al. Innovative Approaches to Safe Surgery: A Narrative Synthesis of Best Practices. Cureus. 2023;15(11):e49723.
DOI: 10.7759/cureus.49723
[5] Ramaswamy Reddy SH, Reddy R, Babu NC, Ashok GN. Stem-cell therapy and platelet-rich plasma in regenerative medicines: A review on pros and cons of the technologies. J Oral Maxillofac Pathol. 2018;22(3):367–374.
DOI: 10.4103/jomfp.JOMFP_93_18
[6] Park S, Rahaman KA, Kim Y, Jeon H, Han H. Fostering tissue engineering and regenerative medicine to treat musculoskeletal disorders in bone and muscle. Bioact Mater. 2024;40:345–365.
DOI: 10.1016/j.bioactmat.2024.06.022
[7] Islam MT, Bulut D, Sharabidze Z. Regenerative Medicine in Orthopaedic Surgery: Pioneering advances and their applications. EMJ Innov. 2024.
DOI: 10.33590/emjinnov/FGDS3814
[8] Moritz CT, Ambrosio F. Regenerative Rehabilitation: Combining Stem Cell Therapies and Activity-Dependent Stimulation. Pediatr Phys Ther. 2017;29(Suppl 3):S10–S15.
DOI: 10.1097/PEP.0000000000000378
[9] Kennedy MI, Whitney K, Evans T, LaPrade RF. Platelet-Rich plasma and cartilage repair. Curr Rev Musculoskelet Med. 2018;11(4):573–582.
DOI: 10.1007/s12178-018-9516-x
[10] Ho-Shui-Ling A, Bolander J, Rustom LE, Johnson AW, Luyten FP, Picart C. Bone regeneration strategies: Engineered scaffolds, bioactive molecules and stem cells current stage and future perspectives. Biomaterials. 2018;180:143–162.
DOI: 10.1016/j.biomaterials.2018.07.017
[11] Morya VK, Shahid H, Lang J, Kwak MK, Park SH, Noh KC. Advancements in Therapeutic Approaches for Degenerative Tendinopathy: Evaluating Efficacy and Challenges. Int J Mol Sci. 2024;25(21):11846.
DOI: 10.3390/ijms252111846
[12] Mao AS, Mooney DJ. Regenerative medicine: Current therapies and future directions. Proc Natl Acad Sci U S A. 2015;112(47):14452–14459.
DOI: 10.1073/pnas.1508520112
[13] Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal Stem Cells for Regenerative Medicine. Cells. 2019;8(8):886.
DOI: 10.3390/cells8080886
[14] Brown PT, Handorf AM, Jeon WB, Li W. Stem cell-based tissue engineering approaches for musculoskeletal regeneration. Curr Pharm Des. 2013;19(19):3429–3445.
DOI: 10.2174/13816128113199990350
[15] Greben AI, Eremin PS, Byalik JV, Kostromina EY, Parsadanyan GK, Markov PA, et al. Regenerative medicine and orthobiological drugs possibilities in upper limb diseases treatment: Literature review. N N Priorov J Traumatol Orthop. 2023;30(1):111–126.
DOI: 10.17816/vto322818
[16] Mohamed-Ahmed S, Fristad I, Lie SA, Suliman S, Mustafa K, Vindenes H, et al. Adipose-derived and bone marrow mesenchymal stem cells: a donor-matched comparison. Stem Cell Res Ther. 2018;9(1).
DOI: 10.1186/s13287-018-0914-1
[17] Sanjurjo-Rodríguez C, Castro-Viñuelas R, Piñeiro-Ramil M, Rodríguez-Fernández S, Fuentes-Boquete I, Blanco FJ, et al. Versatility of induced pluripotent stem cells (IPSCs) for improving the knowledge on musculoskeletal diseases. Int J Mol Sci. 2020;21(17):6124.
DOI: 10.3390/ijms21176124
[18] Aboul-Soud MAM, Alzahrani AJ, Mahmoud A. Induced Pluripotent Stem Cells (iPSCs)-Roles in Regenerative Therapies, Disease Modelling and Drug Screening. Cells. 2021;10(9):2319.
DOI: 10.3390/cells10092319
[19] Deb KD, Sarda K. Human embryonic stem cells: preclinical perspectives. J Transl Med. 2008;6:7.
DOI: 10.1186/1479-5876-6-7
[20] Wei L, Yan W, Shah W, Zhang Z, Wang M, Liu B, et al. Advancements and challenges in stem cell transplantation for regenerative medicine. Heliyon. 2024;10(16):e35836.
DOI: 10.1016/j.heliyon.2024.e35836
[21] Maniar HH, Tawari AA, Suk M, Horwitz DS. The Current Role of Stem Cells in Orthopaedic Surgery. Malays Orthop J. 2015;9(3):1–7.
DOI: 10.5704/MOJ.1511.016
[22] Li X, Guan Y, Li C, Zhang T, Meng F, Zhang J, et al. Immunomodulatory effects of mesenchymal stem cells in peripheral nerve injury. Stem Cell Res Ther. 2022;13(1).
DOI: 10.1186/s13287-021-02690-2
[23] Zhu C, Wu W, Qu X. Mesenchymal stem cells in osteoarthritis therapy: a review. Am J Transl Res. 2021;13(2):448–461.
[24] Trapana J, Weinerman J, Lee D, Sedani A, Constantinescu D, Best TM, et al. Cell-based therapy in the treatment of musculoskeletal diseases. Stem Cells Transl Med. 2024;13(10):959–978.
DOI: 10.1093/stcltm/szae049
[25] Zhu Y, Yan J, Zhang H, Cui G. Bone marrow mesenchymal stem cell-derived exosomes: A novel therapeutic agent for tendon-bone healing (Review). Int J Mol Med. 2023;52(6).
DOI: 10.3892/ijmm.2023.5324
[26] Hussen BM, Taheri M, Yashooa RK, Abdullah GH, Abdullah SR, Kheder RK, et al. Revolutionizing medicine: recent developments and future prospects in stem-cell therapy. Int J Surg. 2024;110(12):8002–8024.
DOI: 10.1097/JS9.0000000000002109
[27] Aswini R, Angelin RR, Saranya B, Elumalai K. Nano delivery systems in stem cell therapy: Transforming regenerative medicine and overcoming clinical challenges. Nano TransMed. 2024;100069.
DOI: 10.1016/j.ntm.2024.100069
[28] Everts P, Onishi K, Jayaram P, Lana JF, Mautner K. Platelet-Rich Plasma: New performance Understandings and Therapeutic Considerations in 2020. Int J Mol Sci. 2020;21(20):7794.
DOI: 10.3390/ijms21207794
[29] Zhu L, Li P, Qin Y, Xiao B, Li J, Xu W, et al. Platelet-rich plasma in orthopedics: Bridging innovation and clinical applications for bone repair. J Orthop Surg. 2024;32(1).
DOI: 10.1177/10225536231224952
[30] Emami A, Namdari H, Parvizpour F, Arabpour Z. Challenges in osteoarthritis treatment. Tissue Cell. 2022;80:101992.
DOI: 10.1016/j.tice.2022.101992
[31] Jayaram P, Mitchell PJT, Shybut TB, Moseley BJ, Lee B. Leukocyte-Rich Platelet-Rich Plasma Is Predominantly Anti-inflammatory Compared With Leukocyte-Poor Platelet-Rich Plasma in Patients With Mild-Moderate Knee Osteoarthritis: A Prospective, Descriptive Laboratory Study. Am J Sports Med. 2023;51(8):2133–2140.
DOI: 10.1177/03635465231170394
[32] Pavlovic V, Ciric M, Jovanovic V, Stojanovic P. Platelet Rich Plasma: a short overview of certain bioactive components. Open Med (Wars). 2016;11(1):242–247.
DOI: 10.1515/med-2016-0048
[33] Wang J, Song Y, Xie W, Zhao J, Wang Y, Yu W. Therapeutic angiogenesis based on injectable hydrogel for protein delivery in ischemic heart disease. iScience. 2023;26(5):106577.
DOI: 10.1016/j.isci.2023.106577
[34] Rodríguez-Merchán EC. Intra-Articular Platelet-Rich Plasma Injections in Knee Osteoarthritis: A Review of Their Current Molecular Mechanisms of Action and Their Degree of Efficacy. Int J Mol Sci. 2022;23(3):1301.
DOI: 10.3390/ijms23031301
[35] Zhou Y, Wang JH. PRP Treatment Efficacy for Tendinopathy: A Review of Basic Science Studies. Biomed Res Int. 2016;2016:9103792.
DOI: 10.1155/2016/9103792
[36] Pineda-Cortel MR, Suarez C, Cabrera JT, Daya M, Bernardo-Bueno MM, Vergara RC, et al. Biotherapeutic Applications of Platelet-Rich Plasma in Regenerative Medicine. Tissue Eng Regen Med. 2023;20(6):811–828.
DOI: 10.1007/s13770-023-00560-x
[37] Popescu MN, Iliescu MG, Beiu C, Popa LG, Mihai MM, Berteanu M, et al. Autologous Platelet-Rich Plasma efficacy in the field of regenerative Medicine: product and quality control. Biomed Res Int. 2021;2021:1–6.
DOI: 10.1155/2021/4672959
[38] Asubiaro J, Avajah F. Platelet-Rich Plasma in Aesthetic Dermatology: Current Evidence and Future Directions. Cureus. 2024;16(8):e66734.
DOI: 10.7759/cureus.66734
[39] Gharpinde MR, Pundkar A, Shrivastava S, Patel H, Chandanwale R. A Comprehensive Review of Platelet-Rich Plasma and Its Emerging Role in Accelerating Bone Healing. Cureus. 2024;16(2):e54122.
DOI: 10.7759/cureus.54122
[40] Stanco D, Urbán P, Tirendi S, Ciardelli G, Barrero J. 3D bioprinting for orthopaedic applications: Current advances, challenges and regulatory considerations. Bioprinting. 2020;20:e00103.
DOI: 10.1016/j.bprint.2020.e00103
[41] Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng. 2025;16:20417314241308022.
DOI: 10.1177/20417314241308022
[42] Chang, J., & Sun, X. (2023). Laser-induced forward transfer based laser bioprinting in biomedical applications. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1255782
DOI: 10.3389/fbioe.2023.1255782
[43] Fang W, Yang M, Wang L, Li W, Liu M, Jin Y, et al. Hydrogels for 3D bioprinting in tissue engineering and regenerative medicine: Current progress and challenges. Int J Bioprint. 2023;9(5):759.
DOI: 10.18063/ijb.759
[44] Koch F, Thaden O, Conrad S, Tröndle K, Finkenzeller G, Zengerle R, et al. Mechanical properties of polycaprolactone (PCL) scaffolds for hybrid 3D-bioprinting with alginate-gelatin hydrogel. J Mech Behav Biomed Mater. 2022;130:105219.
DOI: 10.1016/j.jmbbm.2022.105219
[45] Perera K, Ivone R, Natekin E, Wilga CA, Shen J, Menon JU. 3D Bioprinted Implants for Cartilage Repair in Intervertebral Discs and Knee Menisci. Front Bioeng Biotechnol. 2021;9:754113.
DOI: 10.3389/fbioe.2021.754113
[46] Yazdanpanah Z, Johnston JD, Cooper DM, Chen X. 3D Bioprinted Scaffolds for Bone Tissue Engineering: State-Of-The-Art and Emerging Technologies. Front Bioeng Biotechnol. 2022;10:824156.
DOI: 10.3389/fbioe.2022.824156
[47] Meng M, Wang J, Huang H, Liu X, Zhang J, Li Z. 3D printing metal implants in orthopedic surgery: Methods, applications and future prospects. J Orthop Transl. 2023;42:94–112.
DOI: 10.1016/j.jot.2023.08.004
[48] Pathak K, Saikia R, Das A, Das D, Islam MA, Pramanik P, et al. 3D printing in biomedicine: advancing personalized care through additive manufacturing. Explor Med. 2023;1135–1167.
DOI: 10.37349/emed.2023.00200
[49] Agarwal T, Fortunato GM, Hann SY, Ayan B, Vajanthri KY, Presutti D, et al. Recent advances in bioprinting technologies for engineering cardiac tissue. Mater Sci Eng C Mater Biol Appl. 2021;124:112057.
DOI: 10.1016/j.msec.2021.112057
[50] Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials. 2022;287:121639.
DOI: 10.1016/j.biomaterials.2022.121639
[51] Ma Y, Deng B, He R, Huang P. Advancements of 3D bioprinting in regenerative medicine: Exploring cell sources for organ fabrication. Heliyon. 2024;10(3):e24593.
DOI: 10.1016/j.heliyon.2024.e24593
[52] Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D Bioprinting of Vascularized Tissues for in vitro and in vivo Applications. Front Bioeng Biotechnol. 2021;9:664188.
DOI: 10.3389/fbioe.2021.664188
[53] Kangari P, Talaei-Khozani T, Razeghian-Jahromi I, Razmkhah M. Mesenchymal stem cells: amazing remedies for bone and cartilage defects. Stem Cell Res Ther. 2020;11(1).
DOI: 10.1186/s13287-020-02001-1
[54] Hwang JJ, Rim YA, Nam Y, Ju JH. Recent Developments in Clinical Applications of Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis and Osteoarthritis. Front Immunol. 2021;12:631291.
DOI: 10.3389/fimmu.2021.631291
[55] Patel H, Pundkar A, Shrivastava S, Chandanwale R, Jaiswal AM. A Comprehensive Review on Platelet-Rich Plasma Activation: A Key Player in Accelerating Skin Wound Healing. Cureus. 2023;15(11):e48943.
DOI: 10.7759/cureus.48943
[56] Murali A, Khan I, Tiwari S. Navigating the treatment landscape: Choosing between platelet-rich plasma (PRP) and hyaluronic acid (HA) for knee osteoarthritis management – A narrative review. J Orthop Rep. 2023;3(1):100248.
DOI: 10.1016/j.jorep.2023.100248
[57] Singh CV, Jain S. The Role of Platelet-Rich Plasma in the Management of Sensorineural Hearing Loss: Current Evidence and Emerging Trends. Cureus. 2024;16(9):e68646.
DOI: 10.7759/cureus.68646
[58] Halper J. Narrative Review and Guide: State of the Art and Emerging Opportunities of Bioprinting in tissue regeneration and Medical Instrumentation. Bioengineering. 2025;12(1):71.
DOI: 10.3390/bioengineering12010071
[59] Mirshafiei M, Rashedi H, Yazdian F, Rahdar A, Baino F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater Des. 2024;240:112853.
DOI: 10.1016/j.matdes.2024.112853
[60] El-Kadiry AE, Rafei M, Shammaa R. Cell Therapy: Types, Regulation, and Clinical Benefits. Front Med. 2021;8:756029.
DOI: 10.3389/fmed.2021.756029
[61] Cole BJ, Seroyer ST, Filardo G, Bajaj S, Fortier LA. Platelet-rich plasma: where are we now and where are we going?. Sports Health. 2010;2(3):203–210.
DOI: 10.1177/1941738110366385
[62] Liang K. Tissue Bioprinting: Promise and Challenges. Bioengineering (Basel). 2023;10(12):1400.
DOI: 10.3390/bioengineering10121400
[63] Schneider N, Sinnott M, Patel N, Joseph R. The Use of Platelet-Rich Plasma and Stem Cell Injections in Musculoskeletal Injuries. Cureus. 2024;16(5):e59970.
DOI: 10.7759/cureus.59970
[64] Qian Y, Han Q, Chen W, Song J, Zhao X, Ouyang Y, et al. Platelet-Rich Plasma Derived Growth Factors Contribute to Stem Cell Differentiation in Musculoskeletal Regeneration. Front Chem. 2017;5:89.
DOI: 10.3389/fchem.2017.00089
[65] Ntege EH, Sunami H, Shimizu Y. Advances in regenerative therapy: A review of the literature and future directions. Regen Ther. 2020;14:136–153.
DOI: 10.1016/j.reth.2020.01.004
[66] Kleiderman E, Boily A, Hasilo C, Knoppers BM. Overcoming barriers to facilitate the regulation of multi-centre regenerative medicine clinical trials. Stem Cell Res Ther. 2018;9(1).
DOI: 10.1186/s13287-018-1055-2
[67] Roca JB, Vaishnav P, Morgan M, Mendonça J, Fuchs E. When risks cannot be seen: Regulating uncertainty in emerging technologies. Res Policy. 2017;46(7):1215–1233.
DOI: 10.1016/j.respol.2017.05.010
[68] Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10(1).
DOI: 10.1186/s13287-019-1165-5
[69] Kandi V, Vadakedath S. Clinical Trials and Clinical Research: A Comprehensive Review. Cureus. 2023;15(2):e35077.
DOI: 10.7759/cureus.35077
[70] Volarevic V, Markovic BS, Gazdic M, Volarevic A, Jovicic N, Arsenijevic N, et al. Ethical and Safety Issues of Stem Cell-Based Therapy. Int J Med Sci. 2018;15(1):36–45.
DOI: 10.7150/ijms.21666
[71] Goyal Y. The Moral Implications of Genetic Engineering. Int J Adv Res. 2023;11(08):1094–1098.
DOI: 10.21474/IJAR01/17495
[72] Beheshtizadeh N, Gharibshahian M, Pazhouhnia Z, Rostami M, Zangi AR, Maleki R, et al. Commercialization and regulation of regenerative medicine products: Promises, advances and challenges. Biomed Pharmacother. 2022;153:113431.
DOI: 10.1016/j.biopha.2022.113431
[73] Devi K, Joga R, Srivastava S, Nagpal K, Dhamija I, Grover P, et al. Regulatory landscape and challenges in CAR-T cell therapy development in the US, EU, Japan, and India. Eur J Pharm Biopharm. 2024;201:114361.
DOI: 10.1016/j.ejpb.2024.114361
[74] Chiticaru EA, Ioniță M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: a comprehensive review. Mater Today Bio. 2024;29:101341.
DOI: 10.1016/j.mtbio.2024.101341
[75] Ansori AN, Antonius Y, Susilo RJ, Hayaza S, Kharisma VD, Parikesit AA, et al. Application of CRISPR-Cas9 genome editing technology in various fields: A review. Narra J. 2023;3(2):e184.
DOI: 10.52225/narra.v3i2.184
[76] Farag VE, Devey EA, Leong KW. The Interface of Gene Editing with Regenerative Medicine. Engineering. 2024.
DOI: 10.1016/j.eng.2024.10.019
[77] Wang H, Yu H, Zhou X, Zhang J, Zhou H, Hao H, et al. An Overview of Extracellular Matrix-Based Bioinks for 3D Bioprinting. Front Bioeng Biotechnol. 2022;10:905438.
DOI: 10.3389/fbioe.2022.905438
[78] Gungor-Ozkerim PS, Inci I, Zhang YS, Khademhosseini A, Dokmeci MR. Bioinks for 3D bioprinting: an overview. Biomater Sci. 2018;6(5):915–946.
DOI: 10.1039/C7BM00765E
[79] Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: From bench to bedside. Bioact Mater. 2024;45:201–230.
[80] Zhang S, Chen X, Shan M, Hao Z, Zhang X, Meng L, et al. Convergence of 3D bioprinting and nanotechnology in tissue engineering scaffolds. Biomimetics. 2023;8(1):94.
DOI: 10.3390/biomimetics8010094
[81] Hasan A, Morshed M, Memic A, Hassan S, Webster TJ, Marei HE. Nanoparticles in tissue engineering: applications, challenges and prospects. Int J Nanomedicine. 2018;13:5637–5655.
DOI: 10.2147/IJN.S153758
[82] Alzoubi L, Aljabali AA, Tambuwala MM. Empowering Precision Medicine: The impact of 3D printing on personalized Therapeutic. AAPS PharmSciTech. 2023;24(8).
DOI: 10.1208/s12249-023-02682-w

Artículos más populares

Revisión: Acción de la cerveza sobre el hueso

Aunque se ha demostrado que el exceso de alcohol e...

Publicado: 2023-03-03

Trabajo Original: Resumen ejecutivo de las guías de práctica clínica en la osteoporosis postmenopáusica, glucocorticoidea y del varón (actualización 2022). SEIOMM

Esta versión actualizada de la Guía de osteoporosi...

Publicado: 2023-03-01

Revisión: Fisiopatología de la osteoporosis en las enfermedades articulares inflamatorias crónicas

El sistema inmune y el hueso comparten con frecuen...

Publicado: 2023-03-01

Una cookie o galleta informática es un pequeño archivo de información que se guarda en su navegador cada vez que visita nuestra página web. La utilidad de las cookies es guardar el historial de su actividad en nuestra página web, de manera que, cuando la visite nuevamente, ésta pueda identificarle y configurar el contenido de la misma en base a sus hábitos de navegación, identidad y preferencias. Las cookies pueden ser aceptadas, rechazadas, bloqueadas y borradas, según desee. Ello podrá hacerlo mediante las opciones disponibles en la presente ventana o a través de la configuración de su navegador, según el caso. En caso de que rechace las cookies no podremos asegurarle el correcto funcionamiento de las distintas funcionalidades de nuestra página web. Más información en el apartado “POLÍTICA DE COOKIES” de nuestra página web.